Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Colloid Interface Sci ; 623: 541-551, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: covidwho-1851438

RESUMEN

HYPOTHESIS: Vortex droplet interaction is crucial for understanding the route of disease transmission through expiratory jet where several such embedded droplets continuously interact with vortical structures of different strengths and sizes. EXPERIMENTS: A train of vortex rings with different vortex strength, quantified with vortex Reynolds number (Re'=0,53,221,297) are made to interact with an isolated levitated droplet, and the evolution dynamics is captured using shadowgraphy, particle image velocimetry (PIV), and backlight imaging technique. NaCl-DI water solution of 0, 1, 10 and 20 wt% concentrations are used as test fluids for the droplet. FINDINGS: The results show the dependence of evaporation characteristics on vortex strength, while the crystallization dynamics was found to be independent of it. A reduction of 12.23% and 14.6% in evaporation time was seen in case of de-ionized (DI) water and 1% wt NaCl solution respectively in presence of vortex ring train at Re'=221. In contrast to this, a minimal reduction in evaporation time (0.6% and 0.9% for DI water and 1% wt NaCl solution, respectively) is observed when Re' is increased from 221 to 297. The mechanisms for evaporation time reduction due to enhancement of convective heat and mass transfer from the droplet and shearing away of vapor layer by vortex ring interaction are discussed in this work.


Asunto(s)
Aerosoles y Gotitas Respiratorias , Cloruro de Sodio , Cristalización , Gases , Cloruro de Sodio/química , Agua/química
2.
Am J Health Syst Pharm ; 79(12): 1011-1018, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1692261

RESUMEN

PURPOSE: To compare the chemical stability of Captisol-enabled (CE) melphalan ("CE-melphalan"; Evomela, Acrotech Biopharma LLC) and propylene glycol (PG)-based melphalan ("PG-melphalan"; Alkeran, GlaxoSmithKline) admixtures prepared with 0.9% sodium chloride injection in polyvinyl chloride (PVC) bags or reconstituted vials stored at room temperature (RT) and under refrigeration. METHODS: Lyophilized CE-melphalan and generic PG-melphalan were reconstituted to 5 mg/mL with 0.9% sodium chloride injection or manufacturer-supplied diluent, respectively. The reconstituted vials were then diluted to the desired concentrations with 0.9% sodium chloride injection in PVC bags and were stored at RT (23oC) or under refrigeration (4oC). Aliquots were withdrawn from the bags and reconstituted vials of CE-melphalan and PG-melphalan immediately after preparation and at predetermined time intervals. Melphalan concentrations were measured using a validated high-performance liquid chromatography method. RESULTS: CE-melphalan reconstituted in PVC bags at concentrations of 1 and 2 mg/mL was stable for 6 and 24 hours, respectively, at RT and for 8 and 24 hours, respectively, at 4oC. PG-melphalan reconstituted in bags at 1, 1.5, and 2 mg/mL was stable for 1, 2, and 2 hours, respectively, at RT and for 2, 4, and 4 hours, respectively, at 4oC. Reconstituted CE-melphalan vials were stable for 48 hours at both RT and 4oC, whereas PG-melphalan vials were stable for 6 hours at RT but formed precipitate within 2 hours at 4oC. CONCLUSION: CE-melphalan remained stable longer than generic PG-melphalan under the test conditions. CE-melphalan at 2 mg/mL has 24-hour stability at RT and can be used for extended infusion times or may be compounded ahead of time. Reconstituted CE-melphalan vials are stable for 48 hours at both RT and 4oC.


Asunto(s)
Melfalán , Refrigeración , Cromatografía Líquida de Alta Presión , Embalaje de Medicamentos , Estabilidad de Medicamentos , Almacenaje de Medicamentos , Humanos , Melfalán/química , Cloruro de Polivinilo/química , Glicoles de Propileno , Cloruro de Sodio/química , Temperatura , beta-Ciclodextrinas
3.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: covidwho-1642082

RESUMEN

The phase state of respiratory aerosols and droplets has been linked to the humidity-dependent survival of pathogens such as SARS-CoV-2. To inform strategies to mitigate the spread of infectious disease, it is thus necessary to understand the humidity-dependent phase changes associated with the particles in which pathogens are suspended. Here, we study phase changes of levitated aerosols and droplets composed of model respiratory compounds (salt and protein) and growth media (organic-inorganic mixtures commonly used in studies of pathogen survival) with decreasing relative humidity (RH). Efflorescence was suppressed in many particle compositions and thus unlikely to fully account for the humidity-dependent survival of viruses. Rather, we identify organic-based, semisolid phase states that form under equilibrium conditions at intermediate RH (45 to 80%). A higher-protein content causes particles to exist in a semisolid state under a wider range of RH conditions. Diffusion and, thus, disinfection kinetics are expected to be inhibited in these semisolid states. These observations suggest that organic-based, semisolid states are an important consideration to account for the recovery of virus viability at low RH observed in previous studies. We propose a mechanism in which the semisolid phase shields pathogens from inactivation by hindering the diffusion of solutes. This suggests that the exogenous lifetime of pathogens will depend, in part, on the organic composition of the carrier respiratory particle and thus its origin in the respiratory tract. Furthermore, this work highlights the importance of accounting for spatial heterogeneities and time-dependent changes in the properties of aerosols and droplets undergoing evaporation in studies of pathogen viability.


Asunto(s)
Cloruro de Calcio/química , Modelos Químicos , Aerosoles y Gotitas Respiratorias/química , SARS-CoV-2/química , Albúmina Sérica/química , Cloruro de Sodio/química , COVID-19/virología , Difusión , Desinfección/métodos , Humanos , Humedad , Cinética , Viabilidad Microbiana , Transición de Fase , Propiedades de Superficie
4.
J Occup Environ Hyg ; 17(11-12): 538-545, 2020.
Artículo en Inglés | MEDLINE | ID: covidwho-790863

RESUMEN

Powered air-purifying respirators (PAPRs) that offer protection from particulates are deployed in different workplace environments. Usage of PAPRs by healthcare workers is rapidly increasing; these respirators are often considered the best option in healthcare settings, particularly during public health emergency situations, such as outbreaks of pandemic diseases. At the same time, lack of user training and certain vigorous work activities may lead to a decrease in a respirator's performance. There is a critical need for real-time performance monitoring of respiratory protective devices, including PAPRs. In this effort, a new robust and low-cost real-time performance monitor (RePM) capable of evaluating the protection offered by a PAPR against aerosol particles at a workplace was developed. The new device was evaluated on a manikin and on human subjects against a pair of condensation nuclei counters (P-Trak) used as the reference protection measurement system. The outcome was expressed as a manikin-based protection factor (mPF) and a Simulated Workplace Protection Factor (SWPF) determined while testing on subjects. For the manikin-based testing, the data points collected by the two methods were plotted against each other; a near-perfect correlation was observed with a correlation coefficient of 0.997. This high correlation is particularly remarkable since RePM and condensation particle counter (CPC) measure in different particle size ranges. The data variability increased with increasing mPF. The evaluation on human subjects demonstrated that RePM prototype provided an excellent Sensitivity (96.3% measured on human subjects at a response time of 60 sec) and a Specificity of 100%. The device is believed to be the first of its kind to quantitatively monitor PAPR performance while the wearer is working; it is small, lightweight, and does not interfere with job functions.


Asunto(s)
Aerosoles/análisis , Análisis de Falla de Equipo/métodos , Dispositivos de Protección Respiratoria/normas , Maniquíes , Exposición Profesional/prevención & control , Tamaño de la Partícula , Sensibilidad y Especificidad , Cloruro de Sodio/química
5.
ACS Appl Mater Interfaces ; 13(14): 16084-16096, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: covidwho-1164786

RESUMEN

As COVID-19 exemplifies, respiratory diseases transmitted through aerosols or droplets are global threats to public health, and respiratory protection measures are essential first lines of infection prevention and control. However, common face masks are single use and can cause cross-infection due to the accumulated infectious pathogens. We developed salt-based formulations to coat membrane fibers to fabricate antimicrobial filters. Here, we report a mechanistic study on salt-induced pathogen inactivation. The salt recrystallization following aerosol exposure was characterized over time on sodium chloride (NaCl), potassium sulfate (K2SO4), and potassium chloride (KCl) powders and coatings, which revealed that NaCl and KCl start to recrystallize within 5 min and K2SO4 within 15 min. The inactivation kinetics observed for the H1N1 influenza virus and Klebsiella pneumoniae matched the salt recrystallization well, which was identified as the main destabilizing mechanism. Additionally, the salt-coated filters were prepared with different methods (with and without a vacuum process), which led to salt coatings with different morphologies for diverse applications. Finally, the salt-coated filters caused a loss of pathogen viability independent of transmission mode (aerosols or droplets), against both DI water and artificial saliva suspensions. Overall, these findings increase our understanding of the salt-recrystallization-based technology to develop highly versatile antimicrobial filters.


Asunto(s)
Filtración/instrumentación , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Máscaras , Cloruro de Potasio/química , Cloruro de Sodio/química , Sulfatos/química , Aerosoles , Filtros de Aire , Cristalización , Cinética , Membranas Artificiales , Polipropilenos , Polvos , Dispositivos de Protección Respiratoria , Temperatura , Difracción de Rayos X
6.
Sci Rep ; 10(1): 13875, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: covidwho-720847

RESUMEN

Respiratory protection is key in infection prevention of airborne diseases, as highlighted by the COVID-19 pandemic for instance. Conventional technologies have several drawbacks (i.e., cross-infection risk, filtration efficiency improvements limited by difficulty in breathing, and no safe reusability), which have yet to be addressed in a single device. Here, we report the development of a filter overcoming the major technical challenges of respiratory protective devices. Large-pore membranes, offering high breathability but low bacteria capture, were functionalized to have a uniform salt layer on the fibers. The salt-functionalized membranes achieved high filtration efficiency as opposed to the bare membrane, with differences of up to 48%, while maintaining high breathability (> 60% increase compared to commercial surgical masks even for the thickest salt filters tested). The salt-functionalized filters quickly killed Gram-positive and Gram-negative bacteria aerosols in vitro, with CFU reductions observed as early as within 5 min, and in vivo by causing structural damage due to salt recrystallization. The salt coatings retained the pathogen inactivation capability at harsh environmental conditions (37 °C and a relative humidity of 70%, 80% and 90%). Combination of these properties in one filter will lead to the production of an effective device, comprehensibly mitigating infection transmission globally.


Asunto(s)
Filtros de Aire/microbiología , Antibacterianos/química , Betacoronavirus , Infecciones por Coronavirus/prevención & control , Máscaras/microbiología , Membranas Artificiales , Pandemias/prevención & control , Neumonía Viral/prevención & control , Dispositivos de Protección Respiratoria/microbiología , Cloruro de Sodio/química , Aerosoles , Antibacterianos/farmacología , COVID-19 , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/virología , Cristalización , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Calor , Humanos , Humedad , Neumonía Viral/transmisión , Neumonía Viral/virología , SARS-CoV-2 , Cloruro de Sodio/farmacología
7.
Am J Infect Control ; 48(8): 883-889, 2020 08.
Artículo en Inglés | MEDLINE | ID: covidwho-361418

RESUMEN

OBJECTIVE: The past 4 months, the emergence and spread of novel 2019 SARS-Cov-2 (COVID-19) has led to a global pandemic which is rapidly depleting supplies of personal protective equipment worldwide. There are currently over 1.6 million confirmed cases of COVID-19 worldwide which has resulted in more the 100,000 deaths. As these numbers grow daily, hospitals are being forced to reuse surgical masks in hopes of conserving their dwindling supply. Since COVID-19 will most likely have effects that last for many months, our nationwide shortage of masks poses a long term issue that must be addressed immediately. METHODS: Based on a previous study by Quan et al., a salt-based soaking strategy has been reported to enhance the filtration ability of surgical masks. We propose a similar soaking process which uses materials widely available in anyone's household. We tested this method of pretreating a variety of materials with a salt-based solution by a droplet test using fluorescently stained nanoparticles similar in size to the COVID-19 virus. RESULTS: In this study, we found that paper towels and surgical masks pretreated with the salt-based solution showed a noticeable increase in filtration of nanoparticles similar in size to the COVID-19 virus. We also show that the TWEEN20 used by Quan et al. is not a critical component for the solution, and using salt alone in solution still provides a dramatically increased level of protection. CONCLUSIONS: We believe this method will allow for healthcare workers to create a disposable added layer of protection to their surgical masks, N95s, or homemade masks by using household available products. Adoption of this method may play an essential role in ensuring the safety of healthcare workers during the COVID-19 pandemic and any pandemics that may arise in the future.


Asunto(s)
Infecciones por Coronavirus/prevención & control , Filtración/métodos , Transmisión de Enfermedad Infecciosa de Paciente a Profesional/prevención & control , Máscaras/virología , Pandemias/prevención & control , Equipo de Protección Personal/microbiología , Neumonía Viral/prevención & control , Betacoronavirus/patogenicidad , COVID-19 , Personal de Salud , Humanos , SARS-CoV-2 , Cloruro de Sodio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA